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Phase diagram and structure of colloid-polymer mixtures confined between walls
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The influence of confinement, due to flat parallel structureless walls, on phase separation in colloid-polymer
mixtures, is investigated by means of grand-canonical Monte Carlo simulations. Ultrathin films, with thick-
nesses between D=3-10 colloid diameters, are studied. The Asakura-Oosawa model [J. Chem. Phys. 22, 1255
(1954)] is used to describe the particle interactions. To simulate efficiently, a “cluster move” [J. Chem. Phys.
121, 3253 (2004)] is used in conjunction with successive umbrella sampling [J. Chem. Phys. 120, 10925
(2004)]. These techniques, when combined with finite size scaling, enable an accurate determination of the
unmixing binodal. Our results show that the critical behavior of the confined mixture is described by “effec-
tive” critical exponents, which gradually develop from values near those of the two-dimensional Ising model,
to those of the three-dimensional Ising model, as D increases. The scaling predictions of and Fisher and
Nakanishi [J. Chem. Phys. 75, 5875 (1981)] for the shift of the critical point are compatible with our simu-
lation results. Surprisingly, however, the colloid packing fraction at criticality approaches its bulk (D — o0)
value nonmonotonically, as D is increased. Far from the critical point, our results are compatible with the
simple Kelvin equation, implying a shift of order 1/D in the coexistence colloid chemical potential. We also
present density profiles and pair distribution functions for a number of state points on the binodal, and the

influence of the colloid-wall interaction is studied.
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I. INTRODUCTION

Confinement of fluids in nanoscopic capillaries is a prob-
lem that has received long-standing attention. An interesting
interplay occurs between surface effects at the confining
walls, such as wetting or drying [1-4], and finite size effects
due to the finite capillary width. This interplay leads to a host
of intriguing phenomena, such as capillary condensation or
evaporation [5-9], and a crossover in critical behavior from
three-dimensional (3D) to two-dimensional (2D) Ising char-
acter [4,5,8,10,11]. Apart from fundamental theoretical im-
portance, understanding the structure and phase behavior of
confined fluids is also a prerequisite for targeted applications
in microfluidic and nanofluidic devices, which are becoming
increasingly more relevant [7,12-14].

However, for fluids consisting of small molecules, com-
plications such as the atomistic corrugation of the confining
walls [15], impurity atoms at the walls, roughness of the
walls due to surface steps, dislocations in the crystal struc-
ture, and so forth, may have a profound effect on the phe-
nomena mentioned above. This is especially true when the
width of the slit pore is of the order of a few nanometers, in
which case a quantitative understanding becomes difficult. In
this respect, colloidal dispersions, containing colloidal par-
ticles with diameters in the micrometer range, possess certain
advantages. It then becomes possible to prepare slit pores
which are only a few particle diameters wide, and yet have
walls that are essentially flat on the size scale of the particles.
In addition, interactions between colloidal particles can be
well tuned [16—18]. Particularly promising systems of this
kind are colloid-polymer mixtures, since both the bulk phase
behavior, and the interfaces separating the colloid-rich and
polymer-rich phases, can be studied experimentally in detail
[19-22]. Moreover, the Asakura-Oosawa (AQO) model
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[23,24] provides a simple theoretical framework, which
seems to capture the essential features of such phase-
separating systems, and is moreover well suited for computer
simulations [8,25-30].

The aim of this work is to provide precise predictions for
the phase diagram and the structure of the AO model con-
fined between structureless hard walls. We consider film
thicknesses ranging from D=3 to 10 colloid diameters. Our
work complements earlier work [27,28], based on Gibbs en-
semble Monte Carlo, which focused on the noncritical re-
gime of the phase diagram. In this work, also the critical
regime is considered, in order to compare to theoretical pre-
dictions for the shift in critical parameters as a function of
the film thickness [5,11]. We consider a colloid-to-polymer
size ratio g=0,/0,=0.8, with o, the colloid diameter and o,
the polymer diameter of gyration, since for this particular
size ratio, accurate information on the bulk and interfacial
properties is available [29,30]. We also explore the effect of
an additional weak repulsion between the walls and the col-
loids (in addition to the hard interaction already present).
Understanding the combined effect of film thickness and
wall-colloid interaction, is crucial in providing guidance for
the interpretation of possible experiments. At this point, we
are aware of only one experiment on capillary condensation
of a colloid-polymer mixture (in a wedge formed by glass
plates [22]), but we hope that the present study will encour-
age further experiments. In related previous work carried out
by us, in which a film thickness D=5 and purely hard walls
were considered, the crossover from 3D to 2D Ising critical
behavior was already discussed [8].

The outline of this paper is as follows. In Sec. II we
summarize the most important theoretical predictions rel-
evant for the interpretation of our results. In Sec. III the AO
model is introduced, and details on the simulation technique
are provided. In Sec. IV we investigate the phase behavior
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and the structural properties of the AO model as the film
thickness D is varied, while Sec. V onsiders the influence of
the colloid-wall interaction. Finally, in Sec. VI we summa-
rize our main conclusions.

II. THEORETICAL BACKGROUND

We consider a system with an one-component order pa-
rameter near its critical point. Examples of such systems are
fluids near their vapor-liquid critical point, magnetic systems
(such as the simple Ising model), and binary mixtures (such
as colloid-polymer mixtures) near their critical point of un-
mixing. As is well known, all these systems in 3D bulk be-
long to the 3D Ising universality class [31]. In particular,
critical exponents such as the exponent v (which character-
izes the growth of the order parameter correlation length &
near the critical point), or the order parameter exponent 3
(which characterizes the shape of the binodal between the
unmixed phases in a binary mixture) have nontrivial values
v=0.630, B~0.326 [32-34], rather than the classical mean-
field values VME= 1/2, BMF: 1/2.

When these systems are confined between two identical
flat planar structureless walls a distance D apart, two distinct
physical phenomena affecting the phase transition are ex-
pected to occur.

(i) The growth of the critical correlations in the direction
perpendicular to the walls is limited by the finite thickness of
the film, while critical correlations can still grow further and
unlimited in the two directions parallel to the film. Therefore,
a crossover from 3D critical behavior toward 2D critical be-
havior (for which the exponents mentioned above take the
values v,=1 and B,=1/8, assuming 2D Ising universality
[31,35]) is expected. This crossover is predicted to occur
when the temperaturelike variable has approached a relative
distance ¢ from the critical point in the bulk such that &
o« ¢~" is of the same order as D, implying a crossover distance
of order 7., D~"". This dimensional crossover in critical
behavior also implies an additional enhancement of fluctua-
tions (in lower dimensionality stronger fluctuations occur).
This leads to a depression of the critical point. Consequently,
one expects a shift of the critical point of the same order
Lahigg = D™,

(ii) If there is no special symmetry between the coexisting
phases, one must expect that there is an (energetic and/or
entropic) preference of the walls for one of the coexisting
phases in comparison to the other. This phenomenon is also
well known to occur away from the critical point. For ex-
ample, hydrophilic walls of a thin slit capillary are known to
lead to “capillary condensation” of an undersaturated vapor
in the capillary [36]. Of course, for hydrophobic rather than
hydrophilic walls, also the opposite effect (“capillary evapo-
ration”) may occur.

Clearly, a quantitative prediction of the magnitude, and
sometimes even the sign, of these effects, requires detailed
knowledge of the forces between the walls and the particles
confined by them. However, since phase equilibrium is al-
ways shifted due to surface corrections to the relevant ther-
modynamic potentials, we expect a shift in the coexistence
chemical potential in the thin film, relative to its value in the
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bulk, of order 1/D. This is the so-called “Kelvin equation”
[4-7], which is expected to be valid away from the critical
point. In contrast, the corresponding shift in the chemical
potential at criticality is more subtle. This becomes most
transparent for the case of an Ising magnet (or, equivalently,
the lattice gas model), where in the bulk there is a symmetry
between the coexisting “spin up” and “spin down” phases.
However, in the thin film, this symmetry may be broken by a
surface magnetic field H, [4,5,11,37,38]. While phase coex-
istence in the bulk occurs for bulk magnetic field H=0, co-
existence in the thin film now requires a nonzero bulk field
(with a sign opposite to that of the surface field H,).

It has been shown that in the presence of the surface field,
the singular part of the free energy per spin in this Ising
model should scale as [4,5,11,37,38]

FangD.THH) = [t~ (Dle". H H 7)., (1)
with @=0.110 [32-34] the critical exponent of the specific
heat, A= 1.56 [32-34] the so-called “gap exponent” which
characterizes the bulk equation of state, and A,=0.47

[38—41] its surface analog. The scaling functions f;, where
the signs refer to the sign of #, are discussed in more detail in
Refs. [5,11]. Here, we only infer from Eq. (1) that the shift in
the critical temperature should read as [5]

Lshife = ATC/TC(OO) = [TL(D’HI) - Tc(oo)]/Tc(oo)
- —D_I/VXC(HlDAl/V), (2)

and similarly for the shift in the bulk magnetic field required
to establish coexistence again

H;—0

AH,=H.D,H)) =-D™"Y (H,D*"") o« —H D"

3)

Here, X, and Y. are again scaling functions, and T,() de-
notes the critical temperature in the bulk (D— ) system.
Note that for small H;, we expect that X, tends to a constant,
while Y, becomes a linear function of its argument. This
limit is relevant in the present case, since we deal with rather
small film thicknesses D.

Considering now mixtures of colloids (c) and polymers
(p) in the grand-canonical ensemble, chemical potentials .
and u,, of colloids and polymers, respectively, as well as
temperature 7 and system volume V become the relevant
independent thermodynamic variables. In the framework of
the AO model [23,24], the dependence on temperature only
enters via the fugacities z.=exp(u./kgT), and gz,
=exp(u,/kgT). There is no other explicit temperature depen-
dence in this model. Considering the fugacity of the poly-
mers as a temperaturelike variable, bulk phase coexistence
between a phase rich in colloids (analogous to a liquid in the
liquid-vapor transition) with colloid packing fraction 775, and
a phase poor in colloids (analogous to the vapor) with colloid
packing fraction 7”< 7., occurs on the line z2**(z,). The
latter is determined by the equation u./kpT=pu;""(z,)/kyT
in the plane of variables (z,,z.). The variable Au=pu,

— > thus plays a role analogous to that of the magnetic
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field H in the Ising model, and ni(zp)— 7.(z,) corresponds to
2mg,(T) for H— 07, with mg,(T)=~(fne/ 9H)r the sponta-
neous magnetization or order parameter.

While in the Ising model there is a symmetry with respect
to the sign of H, no corresponding symmetry with respect to
the sign of Aw occurs in colloid-polymer mixtures, of
course. In the Ising model, the two branches J_rmsp(T) of the
binodal, corresponding to positive and negative fields, are
equivalent; this is the particle-hole symmetry of the lattice
gas. Obviously, no such symmetry exists in asymmetric mix-
tures. Therefore, the above identification of variables holds
only to a first approximation, and for a more precise discus-
sion of critical phenomena one needs to consider “field mix-
ing” effects [42]. The temperaturelike variable ¢ should then
be taken parallel to the curve z:°**(z,) at the point zf,“t(zp
=z;m), and the fieldlike variable H becomes a suitable linear
combination of the variables Au and z,,—zcm [29,30,42].
Note that the field mixing formulation of Ref. [42] does not
allow for the appearance of a [t|*# term in the diameter. A
more rigorous formulation, allowing for a [¢|*# term, should
include the pressure in the scaling fields [55].

Even more intricate becomes the identification of the vari-
able corresponding to H, the local magnetic field coupling
to the spins at the surface of the Ising magnet. The case H,;
=0 physically means “neutral walls”, in which case the walls
prefer neither the “spin-up phase” nor the “spin-down phase”
of the ferromagnet. It is not at all obvious which choice of
surface interactions would correspond to such a “neutral
wall”, preferring neither the colloid-rich phase, nor the
polymer-rich phase of our model. Of course, a completely
analogous difficulty occurs in studies of capillary condensa-
tion and/or surface critical phenomena associated with the
vapor-liquid critical point of ordinary fluids [43-45]. We
conclude that, in general, whatever the choice for the
strength and range of the particle-wall interaction, it will
likely correspond to a situation H; # 0, but we have no pos-
sibility to predict the strength (and even the sign) of H; be-
forehand. In principle, a careful analysis of order parameter
profiles at the bulk critical point of a very “thick” film
(which approximates a semi-infinite system with two sur-
faces) for various wall-particle interactions could provide in-
sight into how to realize a situation with H;=0 at criticality
[38]. This, however, gives no guarantee that, for the same
choice of interactions, one also has H;=0 outside of the criti-
cal region.

On the other hand, if our simulations display only very
small shifts of wu**(z,)/ksT with decreasing film thickness,
one may assume that H; in our model is indeed small. In this
case, Egs. (2) and (3) still hold. However, if the data indicate
that this is not the case, and rather the inverse limit
H,D*"">1 is reached instead, simple power laws would
again result

twin==D""X(®), AH ==D"Y(%).  (4)
While the first power law of Eq. (4) is the same as before
(only the constant of proportionality has changed), the sec-
ond power law clearly implies a somewhat faster decay than
found in Eq. (3). Finally, for H;D*V*~1 a crossover behav-
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ior should be detectable, but to clearly identify such behavior
may be difficult. In any case, the above discussion already
shows that (confined) colloid-polymer mixtures may give
rise to a much more complex behavior than the simple Ising
model [11], and hence their study should be rewarding.

III. MODEL AND SIMULATION TECHNIQUE

In this work, the colloids are modeled as hard spheres
with diameter o,., while the polymers are described as
spheres with diameter o,. The polymers may not overlap
with colloids, but there is no interaction between the poly-
mers. The choice of this model [23,24] is motivated by the
fact that flexible polymers form random coils with a rather
large gyration radius R,, which may interpenetrate at very
low energy cost (in particular if the solution in which the
polymers are dissolved, and the colloidal particles are sus-
pended, is close to 6-point conditions [46]). Colloids, on the
other hand, can be prepared with interactions of very short
range [16-18].

We specialize to a size ratio g=0,/0,=0.8 in the follow-
ing and choose o,=1 as our unit of length. The polymer and
colloid packing fractions are np:wof,Np/(6V) and 7,
=ma’N,/(6V), when we have N, polymers and N, colloids
in our system of volume V, respectively. We choose a vol-
ume in the geometry of a rectangular box of linear dimen-
sions L, XL, XL, with L,=L,=L and L =D, respectively.
Periodic boundary conditions are applied in the x and y di-
rections. In the remaining z direction, we place two LXL
walls, at z=0 and z=D, respectively, which act as hard walls
for both polymers and colloids, while in addition a repulsive
step potential of height e (in units of kzT) acts on the col-
loids. The full colloid-wall interaction u (%) thus reads as

o forh=0,
U (h)=1€e for0<h<o,2, (5)
0 otherwise,

with % the distance from the surface of the colloid to the
wall. In this work, €=0, 0.25, 0.5, 1.0, and 2.0 are consid-
ered. Note that the case e=0 (purely hard walls for both
colloids and polymers) and D=5 has already been investi-
gated in our previous work [8]. In this case, a very strong
attraction between the colloids and the walls develops due to
the depletion effect [26].

Following common practice [19,29,30], we choose the so-
called (dimensionless) “polymer reservoir packing fraction”
7][’75 7sz0'[3)/ 6, rather than the polymer fugacity z,, as the
temperaturelike variable. As in our previous work [8,29,30],
we apply a grand canonical cluster move [29], together with
a very efficient reweighting scheme, successive umbrella
sampling [47], in order to obtain the distribution function
P (7] 7][’,,2(‘), defined as the probability of observing the sys-
tem with colloid packing fraction 7, at “inverse temperature”
77;7 and colloid fugacity z.. By the subscript L, we remind the
reader that quite generally there will be finite size effects,
and a suitable extrapolation to the limit L — 0, keeping the
film thickness D fixed, may be required. While for states that
are far away from phase coexistence, PL(77C|7];,ZC) is a
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single-peaked function, near two-phase coexistence a
double-peak structure develops. The precise location of the
fugacity z. at which two-phase coexistence occurs is ob-
tained using the equal-weight rule [48,49]. The positions of
the two peaks in P;(7,]| 7,.2.) then yield estimates for the
two branches, 7]16 and 77, of the binodal. In addition, we also
study reduced moments of P;(7,| 7,.2.) at phase coexist-
ence, defining an analog of the order parameter of the Ising
model

m=m—0m,<mﬁjgmﬂhﬁﬁ@wm (6)
0
and higher-order moments
<m@=f m’ Py (7| 1,.2.)d7,. ™)
0

As is well known, following the behavior of moment ratios
such as

Uy = (m*)*(m*) (8)

along the path where z,. is at phase coexistence in the (z,, 7][’,)
plane, is useful for locating the critical point of the system;
this is the so-called “cumulant intersection method” [50-52].
Although it has been demonstrated recently [8,53] that a
study of the full distribution P;(7.|7,z.) and its moments
also for fugacities z.. off coexistence near criticality is useful,
and can yield even more accurate information on the critical
behavior, the computer time resources for such a study in the
present case are very demanding, and hence not attempted
here.

IV. RESULTS FOR €=0.5

In this section, we present results using step height e
=0.5 in the colloid-wall interaction of Eq. (5). We ultimately
aim to test the Fisher-Nakanishi scaling predictions [5] for
the shift in the critical point parameters. To this end, the
location of the critical point as function of the film thickness
D, the binodal, and the behavior of the critical colloid pack-
ing fraction are investigated first.

A. Critical point

We aim to locate the critical value of 77;, for a number of
thicknesses D. To this end, the cumulant ratio U,, see Eq.
(8), was measured as function of 7, using several lateral
dimensions L. The results are shown in Figs. 1 and 2 for D
=5 and D=10, respectively. We found that for D < 10, simu-
lation data of meaningful accuracy could still be generated,
although for D=10 there is the need to choose the lateral
linear dimension L as large as L=40. From the cumulant
intersection points, 7, ., is obtained. The “effective” correla-
tion length exponent v is obtained from the L dependence
of the cumulant slope Y; evaluated at the intersection point.
One expects that Y, o L/%if; the insets in Figs. 1 and 2 show
that our simulation estimates of Y, are indeed compatible
with this relation. Additional simulations were performed for
thicknesses D=3 and D=7.5; the resulting estimates of 77;,Cr
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FIG. 1. Moment ratio U, for a film of thickness D=5 plotted
versus the polymer reservoir packing fraction 7/, and several
choices of the lateral dimension L=12.5, 15.0, 17.5, 20.0, 22.5, and
25.0. The intersection point yields an estimate for the critical “in-
verse temperature” 77,’,7“=0.892. The inset shows a log-log plot of
the cumulant slope Y, versus the linear dimension L. The straight
line yields the exponent 1/, from which we deduce v,;=0.933.

and vy, as well as the cumulant value UZ at the critical
point, and the corresponding coexistence colloid chemical
potential, are collected in Table I. From these data, it is clear
that, by increasing the film thickness D, a gradual crossover
in the effective critical behavior from 2D Ising toward 3D
Ising universality occurs. While for D=3, v, is very close to
the exact value v=1 of the 2D Ising model, and similarly for
the corresponding cumulant value U, (for the 2D Ising
model, the very precise estimate U::O.856 was obtained
[54]), with increasing D a clear shift toward 3D Ising values
is observed.

Of course, the smooth decrease of these “effective” values
can only be taken as a very rough description of the theoreti-
cally expected crossover scaling scenario [8—11]. For the

-
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FIG. 2. Same as Fig. 1, but for film thickness D=10, yielding
the estimates 7, ,=0.810 and v.¢=0.74.
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TABLE I. Critical parameters of the AO model for different film
thicknesses D, compared to the corresponding 2D and 3D bulk
values. Note that the simulation data reported in this table were

obtained using €=0.5 as step height in the colloid wall interaction
of Eq. (5).

D v UZ n;’cr /.LS?;X(D) 5
2D bulk 1 0.856
3.0 0.955(5)  0.84(1) 1.055(5)  4.39(2) 0.139(1)
5.0 0.933(3)  0.81(1)  0.892(4) 3.715(15) 0.142(1)
7.5 0.805(5)  0.80(1)  0.834(4) 3.43(2) 0.143(1)
10.0 0.74(6) 0.785(10) 0.810(5) 3.307(7) 0.141(1)
3D bulk 0.630 0.629 0.766 3.063 0.134

case of D=5 and hard-wall boundary conditions, a more
elaborate analysis is presented in Ref. [8]. While in this case
the cumulant slopes yield the same “effective” exponent
Vesr=0.933 as found here for D=5 [8], the more elaborate
analysis in fact revealed [8] that the asymptotic critical be-
havior is in reality described precisely by 2D critical expo-
nents, but this can be seen only in a very narrow region
around the critical point. Analyzing any such critical quantity
on a log-log plot, one typically finds a systematic curvature:
the slope of the curve approaches the 2D value for very small
|¢| and then very gradually bends over in the direction to-
wards the 3D value (the latter is not really observed because
the crossover is not yet complete as |¢| becomes so large that
one leaves the critical region) [8]. Since a thorough analysis
of crossover scaling requires an enormous investment of

FIG. 3. (Color online) Binodals of the AO model with g=0.8 in
bulk (full curve without data points) and in confinement by parallel
hard walls, to which a repulsive potential on the colloids with
strength €=0.5 was added [see Eq. (5)]. Circles denote data for D
=3, L=18; squares for D=5, L=20; diamonds for D=7.5, L=30;
and triangles for D=10, L=30. The dotted lines denote the esti-
mated coexistence diameters.
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FIG. 4. Finite size coexistence diameters &y . as function of
1/L, for various choices of D as indicated. The arrow marks the
diameter at the critical point in the thermodynamic limit of the bulk
system, i.e., in the absence of walls, and was taken from Ref. [30].

computer resources, we have refrained from doing so, since
there is no reason to expect any significant surprises.

B. Binodal and coexistence diameter

Next, we consider the binodal. Figure 3 shows some of
our “raw” data for the binodals in confinement, together with
our estimates of the corresponding coexistence diameters
(broken lines). By “raw” we mean that no finite size scaling
analysis was performed on the data. The coexistence diam-
eter ¢ is defined as the average of the coexisting phase den-
sities

8= (nl.+ 712, )

where, as before, 7 and nlc represent the coexistence colloid
packing fractions on the vapor and liquid branches of the
binodal, respectively. The diameters terminate at the critical
value of 77;, for which we used the estimates listed in Table
I. Since the data were obtained for finite L =30, the two
branches of the binodal do not merge at the critical point, but
rather extend beyond it, bending over into the one-phase re-
gion. This effect of “finite size tails” or “rounding” of the
order parameter into the disordered region of the phase dia-
gram is well known from simulations of the Ising model
[50-52]. It is due to the fact that the order parameter distri-
bution is clearly double peaked right at criticality and also in
the one-phase region, if the lateral linear dimension L does
not yet exceed the correlation length [50-52]. The exception
in Fig. 3 is the full curve, which represents the binodal of the
3D bulk AO model. This curve was obtained using the finite
size scaling approach of Ref. [53], and, on the scale of Fig. 3,
should rather precisely reflect the true thermodynamic limit
form L— o of the bulk binodal.
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In order to more accurately determine the colloid packing
fraction at the critical point 7., we have examined the L
dependence of & ., defined as the value of the coexistence
diameter &, given by Eq. (9), as obtained in a finite system of
lateral dimension L, at the critical value of 7. The result is
shown in Fig. 4, where &, , is plotted as function of 1/L,
using for 77, . the values listed in Table I. The data display
significant scatter, but rather intriguing behavior is revealed
nevertheless. By increasing the film thickness D, also & .,
increases, away from the bulk value (arrow in Fig. 4), al-
though in the limit D — o precisely this bulk value should be
recovered again. A possible explanation for this nonmono-
tonic behavior with D, may be found in the precise critical
behavior of the coexistence diameter in the thermodynamic
limit. The critical behavior of & in the limit L — o is rather
intricate, and governed by several competing singular terms
[55]

8= Mool + AP+ Ayt ™+ Ayt + +++), (10)

with relative distance from the critical point 1= 17/, .~ 1,
(nonuniversal) amplitudes A;, and 7, the colloid packing
fraction at the critical point. Note that in 2D, the first singular
term has a much smaller exponent (28=1/4), but also the
amplitude A, may be very small compared to the ampli-
tudes of the other terms. The next order term may involve a
logarithmic correction [56]; recall that «=0 in the 2D Ising
model implies a logarithmic divergence of the specific heat.
It is expected that in a finite system, the singular terms ¢>#
o & 2Blv and @ & (=a)lv " rossover to correction terms,
with ¢ ultimately replaced by L. Hence, we expect for the
quantity &, ., in Fig. 4 the scaling form

Spex= Mo D)1+ Agg(DIL)L?Y + A, (DIL)L™ 1=
+A,(DILL 4 -], (11)

Here, we have assumed that the amplitudes Ai are functions
of the aspect ratio D/L; such a dependence can be motivated
by finite size scaling arguments [10,11]. In view of the rather
large error bars in &, ., in Fig. 4, and the complicated struc-
ture of Eq. (11), we feel that an accurate extrapolation to
obtain 7, (D) is not possible. Similarly, already in Ref. [8],
it was pointed out that a reliable estimate of the critical be-
havior of the diameter in confinement from simulation data is
not yet feasible. Hence, the only tentative conclusion we can
draw from Fig. 4 is that presumably the dependence of
Me.(D) on D is nonmonotonic: 7, (D) for small D does not
differ much from 7, (), but with increasing D the differ-
ence increases first, reaches a maximum, and then decreases
again. Such behavior could stem from competing signs of
some of the amplitudes in Egs. (10) and (11).

For completeness, Fig. 5 shows 8" =lim; _..8; ., as func-
tion of D!, where & was obtained by linearly extrapolating
the data for 6; ., of Fig. 4 in the variable 1/L. The resulting
estimates of 8" have also been collected in Table I, and re-
flect our best possible estimates of the critical colloid pack-
ing packing fraction 7., in the thermodynamic limit [recall
that Eq. (10) for the diameter reduces to 7, =& at the criti-
cal point 7— 0]. Tt is plausible from these data that the varia-
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FIG. 5. Variation of the diameter at the critical point &
=lim; ., ., as function of D~!. The inset shows the diameter &
away from the critical point, choosing 7]2: 1.1, as function of D',

tion of &° with D! is indeed nonmonotonic. However, the
large error bars in &, resulting from the uncertainty in the
extrapolation of &, ., to L— <0, prevent us from making any
quantitative statements. In contrast, at values of 7][’7 that are
far from the critical point for all choices of D considered
here, such as 77,’7= 1.1, the L dependence in the diameter can
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FIG. 6. (a) Binodals of the AO model with ¢g=0.8 in the so-
called grand-canonical representation, choosing the coexistence
chemical potential of the colloids ™ and 7, as variables. Shown
is the bulk binodal (full curve), and the binodal in confinement for
several film thicknesses D (broken curves). The symbols mark the
corresponding critical points. (b) Shift of the critical coexistence
colloid chemical potential, given by Eq. (13), as function of
D@1=8/7 () Shift of the critical polymer reservoir packing frac-
tion, given by Eq. (12), as a function of D~"/*. Linear straight line
fits through the origin in (b) and (c) confirm that the data are com-
patible with the theoretical Fisher-Nakanishi predictions [5].
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FIG. 7. (Color online) Test of the Kelvin equation. Shown is the
chemical potential difference, given by Eq. (14), as function of the
inverse film thickness. Three values of 7];, chosen well above the
critical values 7, (D), are included. Broken straight lines show
that the data are compatible with the Kelvin equation.

safely be neglected. In this case, the variation with D! is
clearly monotonic, and approximately linear for small D!,
see the inset of Fig. 5.

C. Fisher-Nakanishi scaling and Kelvin equation

Next, we consider the Fisher-Nakanishi scaling predic-
tions, essentially the main result of this paper. Recall from
the discussion in Sec. II, that the Fisher-Nakanishi scaling
predictions pertain to the shift in the critical point param-
eters. More precisely, for the shift in the critical “inverse
temperature” as function of the film thickness D, one expects
that

Aﬂ;,cr(D) = n;,cr(D) - n;,cr(oo) o D_I/Va (12)

with v the correlation length critical exponent of the 3D Ising
model, 7, (D) the critical value of 7, in the confined sys-
tem of thickness D, and 7, () the critical value of 7, in
the bulk (D—o0) system. The second scaling prediction of
Fisher and Nakanishi pertains to the shift in the coexistence
chemical potential of the colloids at criticality, as function of
the film thickness D. It is expected that

AMcoeX(D) = Mi?cerX(D) _ McoeX(oo) o D(AI—A)/V’ (13)

c,cr c,cr

with A and A, the gap exponents introduced in Sec. II, v
again the correlation length exponent of the 3D Ising model,
e (D) the coexistence chemical potential of the colloids at
criticality in the confined system, and w() the coexist-
ence chemical potential of the colloids at criticality in the
bulk system. Our results have been collected in Fig. 6. The

left panel shows the coexistence chemical potential u°™* of
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FIG. 8. Colloid density profiles for film thickness D=10 and
lateral dimension L=30. Profiles were obtained for three different
values of 77;, as indicated, chosen to be well away from the critical
point. Shown are profiles measured on the vapor branch of the
binodal (a) and on the liquid branch (b). The insets show the cor-
responding polymer density profiles.

the colloids as a function of 77]’], for several values of the film
thickness D. We remind the reader that the coexistence
chemical potential of the colloids follows from the equal-
weight-rule [48,49]. The shift in the coexistence chemical
potential of the colloids at criticality, see Eq. (13), is plotted
in Fig. 6(b), as function of DW1=8v Here, the chemical po-
tential shifts were simply read-off from Fig. 6(a); the corre-
sponding values have also been collected in Table I for com-
pleteness. The shift in the critical “inverse temperature,” see
Eq. (12), is plotted in Fig. 6(c), as function of D™'”, where
for the critical values of 77;, the estimates of Table I were
used. In Figs. 6(b) and 6(c), the known values of the expo-
nents were used, as quoted previously. Validity of the Fisher-
Nakanishi relations implies that the data collapse onto
straight lines through the origin. Of course, data for small D,
such as D=3 and D=5, need not follow these relations, be-
cause the Fisher-Nakanishi predictions are valid only for as-
ymptotically large D. For small D, corrections to finite size
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FIG. 9. Same as Fig. 8, but for D=5 and L=20.

scaling likely come into play. In view of this, the agreement
of our data with the scaling predictions, Egs. (2) and (3), is
already rather satisfactory.

Finally, we consider the Kelvin equation, which is ex-
pected to describe the shift in the coexistence colloid chemi-
cal potential away from the critical point. It is expected that

(Apketvin = s (D) = pe*(e0) & 1/D, (14)

with u (D) the coexistence chemical potential of the col-
loids in the confined system, and u:"**(%) that in the bulk.
Figure 7 presents a test of the Kelvin equation, plotting the
chemical potential difference as function of D!, choosing
three values of 77,’, which are much higher than the corre-
sponding critical values n;,cr(D). Once again, some system-
atic deviations at very small thicknesses (D=3 and D=5) are
seen, while for D=7.5 and D=10, one can already observe
the expected straight lines through the origin.

D. Structural properties

We now consider the local structure in the thin films. Fig-
ures 8 and 9 show density profiles of colloids and polymers
(the latter are shown as insets), as a function of the distance
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FIG. 10. Radial distribution functions g..(r) (main frame) and
gcp(r) (inset) obtained in planes parallel to the confining walls (see
details in text) for a film with thickness D=10. The full curves show
data obtained in the direct vicinity of the walls; the broken curves
show data obtained in the bulk region of the film. Here, the bulk
region was taken to be in the range 3.5<z=<6.5, where the corre-
sponding density profile is essentially flat, see Fig. 8.

ee=20
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FIG. 11. (Color online) Binodal of the AO model with ¢=0.8 in
bulk (full curve) and confinement (symbols). Shown are data for
two system sizes D=10, L=30 (a) and D=5, L=30 (b). For each
system size, two values of the colloid-wall interaction parameter e,
see Eq. (5), are considered. Broken lines indicate the coexistence
diameters of the confined systems.
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FIG. 12. Colloid density profiles obtained in thin films at 772:1.1, for two values of the film thickness D, and several values of the
colloid-wall parameter € as indicated. Frames (a) and (b) show profiles obtained for D=10, on the vapor and liquid branch of the binodal,
respectively. Frames (c) and (d) show the corresponding profiles for thickness D=3. The insets represent density profiles of the polymers.

z across the film. Results are shown for for D=10 (Fig. 8)
and D=5 (Fig. 9). The three values of 77; are chosen well
away from the critical point, such that finite size effects in L
can safely be neglected. The upper panel in each figure
shows profiles obtained in the colloidal “vapor” phase; the
lower panel in the colloidal “liquid” phase, that coexists with
the vapor. It is clear that, despite the repulsive colloid-wall
energy [€=0.5 in Eq. (5)], the entropically driven attraction
of the colloids to the walls still exists, and causes the forma-
tion of a rather dense layer of colloids at the walls. At not too
large values of 77;, one can even see an indication of a sec-
ond layer of colloids in the “vapor” phase. Of course, in the
liquid phase, rather pronounced layering effects can always
be detected. For the case D=10, there are three colloidal
layers adjacent to each wall; in the range 3.5<7=<6.5, the
density profiles are essentially horizontal. This flatness indi-
cates bulklike behavior in the center of the thin film. In con-
trast, for the case D=3, the layering associated with the left
wall “interferes” with layering effects at the right wall, and
no bulk region can be identified. For the particular param-
eters considered here, Fig. 9 shows that only five layers of

colloids can be accommodated in a slit D=5 colloid diam-
eters wide. Note also the steplike increase in the colloid den-
sity at z=1 and z=4. This feature must be attributed to the
step in the colloid-wall interaction, see Eq. (5).

In view of the high colloid density reached locally in the
first layer adjacent to each wall, one may wonder whether
this affects the lateral ordering of the colloids in planes par-
allel to the walls. Therefore, we have measured the radial
distribution functions g,4(r) for colloid-colloid pairs (a8
=cc) and colloid-polymer pairs (aB=cp), on the liquid
branch of the binodal. Here, r denotes the magnitude of the
displacement vector r:|;7,»j| between pairs of particles (i,j
=c,p). We have determined g,4(r) in the bulk region of the
film (center), and in the vicinity of the walls, i.e., at a dis-
tance of 1o from the walls. Note that, in a system with walls
(or virtual boundaries that define, e.g., the center of the con-
fined system), the definition of the radial distibution function
is different from that in the bulk. In an isotropic system with
periodic boundary conditions, g.s(r) is normalized by a
phase factor 4712, However, for the case that boundaries are
present, this factor has to be modified such that it is then

031601-9



VINK et al.

3.0
— 2.0
o

1.0

- =20
0.0 T :
1.0 2.0 3.0 4.0

FIG. 13. Radial distribution functions g..(r) (main frame) and
8cp(r) (inset), obtained in the boundary layer adjacent directly to the
walls, for two values of € as indicated. Results were obtained for
thickness D=10, L=30, and 7,=1.1.

determined only by that part of the surface 477 of a sphere
around a particle that fits into the system. Thus, the normal-
ization factor depends on the distance of the particles from
the walls in z direction. The result for g,4(r) is illustrated in
Fig. 10, for thickness D=10, lateral dimension L=30, and
77[,:1.1. The important conclusion of Fig. 10 is that the ra-
dial distribution functions at the wall are almost indistin-
guishable from those of the bulk. This shows that, at the
value of 7],’, considered here, there is still no sign of wall-
induced crystallization. Corresponding data for other film
thicknesses, D=3 and D=5, have also been collected, but
show the same trend as in Fig. 10, and are therefore not
shown.

V. INFLUENCE OF THE COLLOID-WALL INTERACTION

The results so far were obtained using €=0.5 in the
colloid-wall interaction of Eq. (5). In this section, the param-
eter € itself is varied, and the corresponding changes in the
phase behavior (Fig. 11) and in the density profiles (Fig. 12)
will be discussed. Figure 11 shows the binodal for thickness
D=10 and D=5, for two different values of €, compared to
the bulk binodal. As before, e=0 implies pure hard walls [8].
We observe that, for large 171’,, the binodal corresponding to
€=2.0 and D=10, approaches the bulk binodal rather closely.
This indicates that e=2.0 approximately cancels the entropic
colloid-wall attraction. The latter is also evident from the
corresponding density profiles, see Figs. 12(a) and 12(b). For
€=2.0, the peak in the colloid density profile in the layers
adjacent to the walls, is significantly reduced. In the liquid
phase, we instead recognize a rather strong density jump for
€=2.0, at both z=1 and z=D-1, due to the step in the
colloid-wall potential. Only for €=0, do the density profiles
remain smooth.
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Clearly, in future work, a careful analysis of more realistic
colloid-wall interactions is desirable. Such a study is more-
over warranted because we find, see Fig. 13, that variations
in € significantly influence the radial distribution functions
gcc(r) and g,(r), measured at the walls. By increasing €, a
reduction of the first peak in g..(r) occurs, with the second
peak becoming almost completely washed out; for g,(r) the
effect is even more dramatic. As expected, increasing € re-
duces the colloid density at the walls somewhat, thereby also
weakening their tendency to order in the layers adjacent to
the walls. Similar conclusions emerge from other wall thick-
nesses, too, and are therefore not shown here.

VI. DISCUSSION AND CONCLUDING REMARKS

Colloid-polymer mixtures are important model systems
for the experimental exploration of fluid-fluid phase separa-
tion [19,20] and interfacial phenomena [21,22]. In order to
guide possible future experiments on phase separation of
such systems in confined geometry, we have carried out a
simulation study of a generic model system, the AO model,
confined to a slit formed by two parallel walls. The walls
were not only impenetrable to both colloids and polymers,
but in addition a short-ranged repulsive interaction between
the walls and the colloids was added. Such an interaction can
be realized, for instance, by a suitable coating of the walls
with a moderately dense polymer brush (with the same
chemical composition of the polymers dissolved in the solu-
tion). In this way, the strength of the depletion interaction
between the colloid and the walls can be modified.

Our results show that the unmixing binodal, describing
phase separation in colloid-polymer mixtures, changes dra-
matically from its bulk form, when the width of the pore is in
the range of 3-10 colloid diameters. While such ultrathin
pores seem to be experimentally realizable for colloidal sys-
tems, where the particle diameters are in the micrometer
range, a corresponding study of a mixture of small molecules
or atoms, clearly, would be extremely difficult, if not impos-
sible. Surprisingly, even for thin pores, we find that bulklike
phase behavior in the center of the pore is obtained, provided
one is far away from criticality. Only for pores with thick-
nesses smaller than D=30, or so, can a bulklike region in the
center of the pore no longer be identified. In this case, the
layering induced in the density by the left wall interferes
with the layering due to the right wall. Therefore, such ex-
tremely thin slit pores cannot be accounted for quantitatively
in terms of a decomposition of their properties into bulk and
surface properties. Hence, the description of the shift of the
transition between the phases poor in colloids (“vapor”) and
rich in colloids (“liquid”) in terms of the Kelvin equation, no
longer is accurate. Nevertheless, agreement with the Kelvin
equation is already recovered again above D=100, or so,
which is still remarkably thin.

The main emphasis of this work, however, has been a
study of the shift of the critical point. It has been shown that
the scaling theory of Fisher and Nakanishi [5], originally
formulated for the Ising lattice gas model exhibiting full
particle-hole symmetry between the coexisting phases, is
compatible with our present numerical results. A nontrivial
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finding, which needs further investigation, is the fact that the
critical value of the coexistence diameter approaches its lim-
iting value in a nonmonotonic way when D — .

In our study, we have obtained not only accurate binodal
curves of confined colloid-polymer mixtures, but we have
also characterized the coexisting colloid-rich and colloid-
poor phases in terms of their concentration profiles across the
slit pore, and in terms of their radial distribution functions
obtained in planes parallel to the walls. It would be interest-
ing to extract corresponding information from experiments.
Since the AO model is a crude simplification of reality, char-
acteristic differences between simulation and experiment are
to be expected, elucidating the limitations of the AO model.

In future work, we plan to extend our study to confine-
ment between two parallel planar walls which are non-

PHYSICAL REVIEW E 74, 031601 (2006)

equivalent, whereby, for example, only one wall is coated by
the polymer brush. In this way, an experimental realization
of the interface localization-delocalization transition [4] may
become possible. Also an extension of such studies to the
dynamics of phase separation under confinement is of inter-
est. We hope that the present work will stimulate correspond-
ing experimental efforts.
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